

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Economic Affairs SECO

Introduction to Outbreak Investigation (focus on foodborne outbreak investigation)

Marco De Nardi

Ppt outline

- Definition and purposes of outbreak investigation
- Key steps in outbreak investigation
- Food-borne outbreak investigation
- Epidemic curve

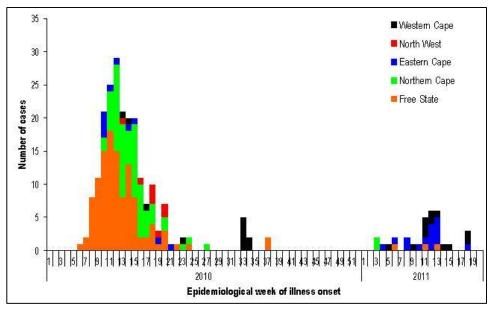
Definition and purposes of outbreak investigation

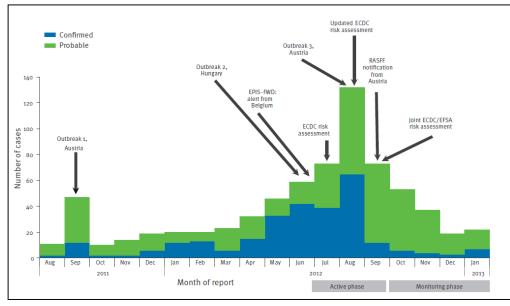
Quiz 1

Anybody ever involved in outbreak investigation?

Can you define what an outbreak is?

Definition: outbreak


• Outbreak is defined as an epidemic limited to localized increase in the incidence of a disease, e.g. in a village, town, or closed institution (Last, 2001)


The terms "Outbreak" and "Epidemic" are often used interchangeably

 Sometimes epidemic used in situations involving larger numbers of people/animals over a wide geographic area

Outbreaks examples

Epidemic curve illustrating the number of laboratory-confirmed **RVF** cases by epidemiological week of illness onset, by province, South Africa, last updated 20 May 2011

http://www.nicd.ac.za/?page=rift_valley feve##outbreak&id=94

SAFOSO

Animal Health Matters

Confirmed and probable cases of **Salmonella Stanley** infection in humans by month of report in affected European Union
Member States, August 2011–January 2013
http://www.eurosurveillance.org/images/dynamic/EE/V19N19/art20801.pdf

Purposes of an Outbreak Investigation

- **Stop** the outbreak
- **Prevent spread** of the pathogen/disease
- Ensure public's and animal health
- Improve surveillance (e.g. establishment of early warning system)
 - to guide rapid reaction of public and animal health authorities
- Improve knowledge about a specific pathogen
- Prevent future outbreaks

Understand key steps of outbreak investigations

Approaches for outbreak investigation

1) Foodborne - outbreak investigation

2) Animals health - outbreak investigation

Usual Scenario When Investigating an Outbreak

- Unexpected event
- Need to investigate quickly
- Pressure for answers
- Multiple agencies
- Media spotlight
- Work carried out in the field

Systematic approach

Three-pronged approach

• Epidemiologic investigation

Laboratory testing

• Environmental assessment

Steps of outbreak investigation

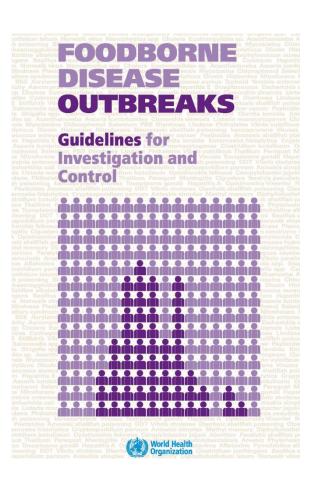
- During an outbreak investigation, we aim to answer the six major investigative questions:
- Who?
- What?
- When?
- Where?
- Why?
- How?
- The very same questions apply to outbreak investigation in veterinary and human health sectors

Steps of outbreak Investigation in animals population (OIE)

- 1. Preparation for field work
- Coordination with public health competent authorities in case of zoonosis
- 3. Confirmation of the report triggering the investigation (WHAT)
- 4. Confirmation of diagnosis (WHAT)
- 5. Epidemiological follow-up and tracing (WHY, HOW)
- Collection and analysis of data including the animals involved and the spatial and temporal distribution (WHO, WHERE, WHEN)
- 7. Implementation of control and preventive measures
- 8. Documentation and reporting

Steps of outbreak Investigation in public health (CDC)

- 1. Establish the existence of an outbreak
- 2. Verify the diagnosis (WHAT)
- 3. Prepare for field work
- 4. Construct a working case definition (WHAT)
- 5. Find cases systematically and record information (WHO, WHERE, WHEN)
- 6. Perform descriptive epidemiology (WHO, WHERE, WHEN)
- 7. Develop hypotheses (WHY, HOW)
- 8. Evaluate hypotheses epidemiologically (WHY, HOW)
- 9. As necessary, reconsider, refine, and re-evaluate hypotheses (WHY, HOW)
- 10. Compare and reconcile with laboratory and/or environmental studies (WHAT)
- 11. Implement control and prevention measures
- 12. Initiate or maintain surveillance
- 13. Communicate findings


Food borne outbreak investigation

Food-borne outbreak investigation (CDC-WHO)

https://www.cdc.gov/foodsafety/outbreaks/investigating-outbreaks/

http://www.who.int/foodsafety/publications/foodbordisease/outbreak_guidelines.pdf

1) Preliminary assessment of the situation

- Consider whether or not the cases have the same illness (or different manifestations of the same disease).
- Determine whether there is a real outbreak by assessing the normal background activity of disease.
- Conduct in-depth **interviews** with initial cases.
- Collect **clinical specimens** from cases.
- Conduct site investigation at implicated premises.
- Collect **food specimens** when appropriate.
- Formulate preliminary hypotheses.
- Initiate control measures as appropriate.
- Decide whether to convene a formal outbreak control **team**.
- Make a decision about the need for further investigation.

2) Descriptive epidemiology

- Establish case definitions for confirmed and probable cases.
- Identify as many cases as possible.
- Collect data from affected persons on a standardized questionnaire.
- Categorize cases by time, place and person.
- Determine who is at risk of becoming ill.

Case ID	Age	Sex	Residence	Occupation	Onset	Rash	Fever	Diarrhea
L. Roberts	27	F	Village A	Teacher	2-Feb-11	Υ	N	Y
J. Nepil	6	F	Village B	N/A	5-Feb-11	Υ	N	N
K. Josephs	6	F	Village B	N/A	5-Feb-11	Υ	Υ	Υ
R. Oterre	5	F	Village B	N/A	6-Feb-11	Υ	N	N
S. Sagut	6	F	Village B	N/A	6-Feb-11	Υ	N	N
A. Smith	6	F	Village B	N/A	7-Feb-11	Y	Y	N
G. Woodson	5	F	Village B	N/A	7-Feb-11	Υ	Υ	Υ
B. Otango	40	F	Village C	Nurse	11-Feb-11	Υ	Υ	N
N. Cabule	5	F	Village B	N/A	12-Feb-11	Y	Y	Y
P. Smith	12	M	Village B	N/A	12-Feb-11	Υ	Υ	N
M. Smith	33	M	Village B	Office worker	15-Feb-11	Υ	N	N

3) Communication

- Consider the best routes of **communication** with colleagues, patients and the public.
- Ensure accuracy and timeliness. Include all those who need to know.
- Use mass media constructively.

4) Food and environmental investigations

- Inspect structural and operational hygiene in implicated food premises.
- Assess procedures undergone by a suspect food.
- Take appropriate food and environmental samples.

5) Analysis and interpretation

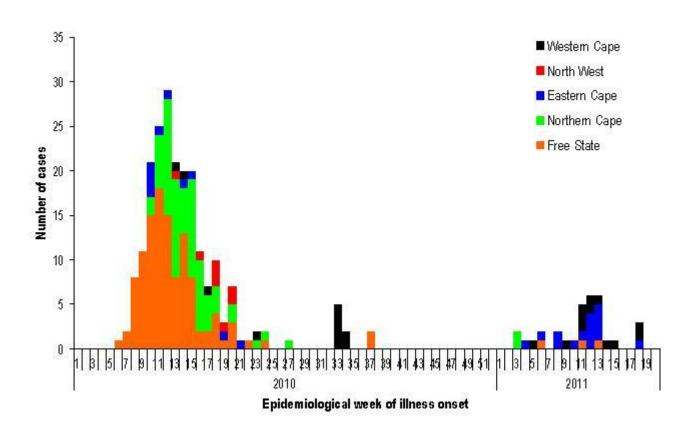
- Review all existing data.
- Develop explanatory hypotheses.
- Carry out analytical studies to test hypotheses as required.
- Collect further clinical and food specimens for laboratory tests as required.

6) Control measures

- Control the source: animal, human or environmental.
- Control transmission.
- Protect persons at risk.
- Declare the outbreak over when the number of new cases has returned to background levels.
- Consider strengthening or instituting continuous surveillance.

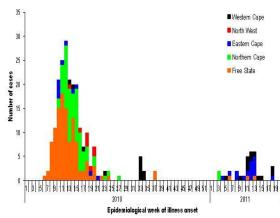
7) Further studies

- Conduct further analytical (case-control, cohort) studies.
- Conduct further food and microbiological investigations.
- Make recommendations for the prevention of recurrences of similar outbreaks.
- Determine remaining questions or areas for future research identified through this investigation.
- Share information with public health colleagues in order to promote awareness and possibly prevent similar outbreaks in the future.



Epidemic curve

Categorize cases by time, place and person



Epidemic curve

The **shape of the curve** and the **time scale** depend on:

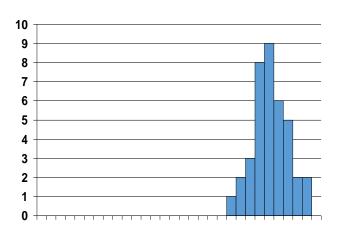
- Incubation period of the disease
- Infectivity of the pathogen
- Proportion of susceptible individuals (humans, animals) in the population
- Trasmission route (e.g. food borne disease, vector borne disease, etc.)
- Contact pattern beetwen individuals (e.g. density of humans/animals)

Epi-Curves: Mode of Transmission

 The shape of an epi-curve can indicate the following modes of transmission:

- Common source
- C. point source
- C. continuous source
- C. intermittent source
- Propagated (person-to-person) with clearly defined secondary cases
- Propagated with overlapping secondary cases

Epidemic curve: common source epidemic


All cases are infected from a source that is common to all individuals

1) Common point source epidemic

Interpretation: Individuals (people, animals) are exposed to the same source over a relatively brief period

Shape of the curve: a steep up slope, a peak and a gradual down-slope

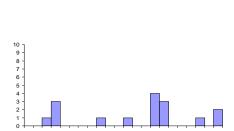
Example: food poisoning outbreak with a single batch of food contaminated

Epidemic curve: common source epidemic

2) Common <u>continuous</u> source epidemic

Interpretation: Individuals (people, animals) are exposed to the same source over an extended period

Shape of the curve: curve will have a plateau instead of a peak

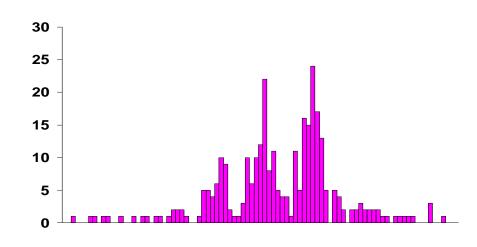

Example: contamination of the public drinking water with chemicals (e.g. insecticide)

Interpretation: Individuals (people, animals) are exposed to the same source over an extended period but intermittingly

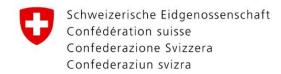
Shape of the curve: cases continue to come up sporadically over time, but without continuity.

Example: contamination of the same public drinking water with chemicals (e.g. insecticide) but intermittingly

15


Epidemic curve: propagating epidemic

4) Propagating epidemic


Interpretation: individual-to-individual spread. This is caused by an infectious agent in which initial (i.e. **primary**) cases excrete the agent, and thus infect susceptible individuals, which constitutes **secondary cases**. One of the primary case is frequently the **index case**, that is, the first case in a defined group to come to the attention of investigators

Shape of the curve: a series of progressively taller peaks

Example: HPAI outbreak in poultry populations;
Seasonal influenza in human population

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Economic Affairs SECO

Questions? Thanks