SAFOSO

Animal Health Matters.
For Safe Food Solutions.

Epidemiological Aspects of Laboratory Investigations

Marco De Nardi

Overview:

- Diagnosis and importance of uncertainty in diagnostic tests
- Tests characteristics (se-sp)
- Predictive values (ppv-npv)
- Example

Diagnosis and uncertainty

- DIAGNOSIS:
- attempt to determine the health status of an animal, herd, flock (Healthy or Diseased?);
- art of identifying the nature of patient's disease (Brucellosis? Tubercolosis?);
- it is the basis for a decision!
(to treat a patient,... to implement a control program,...to investigate further...to do nothing....)

Diagnosis and uncertainty

- Diagnostician does not work with certainties;
- incomplete understanding of biological processes;
- true biological variation;
- diagnostic tests are not perfect (sensitivity $95 \%=5 \%$ F -; specificity $98 \%=2 \% F+$)
- systematic error (information bias, selection bias)
- measurement error (misclassification);
- random error (chance);
- Medicine as a stochastic art (versus deterministic paradigm): outcome not certain but probabilistic.

Outcome of diagnostic tests

- Dichotomous: presence or absence of a pathogen;

\downarrow
Interpretation is often straightforward

Outcome of diagnostic tests

- Continuous scale:

Cut-off value

- Measurement on continuous scale: need of a cut-off value to interpret results expressed in a continuos scale as a dichotomous variable (healthy-diseased).
REGULATION (EC) No 853/2004 OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL
of 29 April 2004
laying down specific hygiene rules for
on the hygiene of foodstuffs

Food business operators must initiate procedures to ensure that raw milk meets the following criteria:
(i) for raw cows' milk:

Plate count at $30^{\circ} \mathrm{C}$ (per ml) Somatic cell count (per ml)	$\leq 100000^{\left({ }^{*}\right)}$ $\leq 400000^{\left({ }^{* *}\right)}$

Cut-off

Limitation: likely to result in overlap between healthy and diseased \rightarrow uncertainty

Performance of a diagnostic tests

- The evaluation of diagnostic tests needs the use of a "gold standard".
- G.S.: it is a mean by which we can assess whether a disease, or any other outcome of interest, is truly present or not.
- The definition of the "gold standard" is not always straightforward!

Tests characteristics

		Disease status Gold Standard		
		-	TOTAL	
Test result	+	a true +	b false +	$a+b$
	-	c false -	d true -	$c+d$
	TOTAL	$a+c$	$b+d$	N

Tests characteristics

- The performance of a diagnostic test, relative to the gold standard, are quantified by two parameters indicators of the validity (accuracy) of diagnostic tests:

Sensitivity (Se):

- ability of a test to correctly identify diseased animals
- the proportion of true + detected by the test
- indication of how many false - are expected ($\mathrm{Se}=95 \% \rightarrow \mathrm{~F}-=5 \%$)
- Specificity (Sp):
- ability of a test to correctly identify non-diseased animals
- the proportion of true - detected by the test
- indication of how many false + are expected ($\mathrm{Sp}=95 \% \rightarrow \mathrm{~F}+=5 \%$)

Tests characteristics

		Disease status		
		-	TOTAL	
Test result	+	a	b	$a+b$
	-	c	d	$c+d$
	TOTAL	$a+c$	$b+d$	N

$$
\text { SENSITIVITY }=\frac{\mathrm{a}}{\mathrm{a}+\mathrm{c}}
$$

Tests characteristics

		Disease status		TOTAL
		+	-	
Test result	+	a	b	$a+b$
	-	c	d	${ }^{++d}$
	total	$a+c$	${ }^{\text {b }+d}$	N
SPECIFICITY $=\frac{\mathrm{d}}{\mathrm{b}+\mathrm{d}}$				

Tests characteristics

		Disease status		
		-	TOTAL	
Test result	+	$79 T^{+}$	$7 F^{+}$	86
	-	$12 F^{\prime}-$	$110 T-$	122
	TOTAL	91	117	208

$$
\begin{aligned}
& S e=79 / 91=87 \% \quad F-=13 \%(12 / 91=0.13) \\
& S p=110 / 117=94 \% \quad F+=6 \%(7 / 117=0.06)
\end{aligned}
$$

True and apparent Prevalence

		Disease	
		+	-
Test	+	a	b
	-	c	d

- True Prevalence: Based on the true disease status of the individuals

True prevalence $=(a+c) /(a+b+c+d)$

- Apparent prevalence: Estimate of the prevalence based on the means used to identify disease

Apparent prevalence $=(a+b) /(a+b+c+d)$
true prevalence $=\frac{\text { apparent prevalence }+(\text { specificity }-1)}{\text { specificity }+(\text { sensitivity }-1)}$

Tests characteristics

- Se-Sp are intrinsic characteristics of a test (do not depend on the prevalence of the disease);
- Se-Sp are not solid...can be changed accordingly;
- Inversely related (decrease F-, increase F+ or viceversa).

Selection of the cut-off

- Changing the cut-off value (in case of results expressed in a continuous scale) will vary both Se and Sp.

There are sophisticated methods for optimum selection of the cut-off point.

- ROC curve, likelihood ratios etc....

Selection of the Cut-off

Frequency distribution of ODs from infected an uninfected animals

Selection of the Cut-off

Frequency distribution of ODs from infected an uninfected animals

To $\uparrow \mathbf{S e} \rightarrow$ cut-off shifted to the left

Frequency distribution of ODs from infected an uninfected animals

To $\uparrow \mathbf{S p} \rightarrow$ cut-off shifted to the right

Frequency distribution of ODs from infected an uninfected animals

Predictive values

- Positive predictive value?
- Negative predictive value?

Predictive Values (PVs)

- Positive Predictive Value (ppv): probability that an animal positive according to the test, is actually truly positive
- Negative Predictive Value (npv): probability that an animal negative, according to the test, is actually truly negative
- PVs depend on:
- Se, Sp : given a reference population and a cut-off, Se and Sp are relatively stable;
- Prevalence: unstable

Predictive Values (PVs)

		Disease status		
		-	TOTAL	
Test result	+	\boldsymbol{a}	b	$a+b$
	-	c	d	$c+d$
	TOTAL	$a+c$	$b+d$	N

$$
\text { POSITIVE PREDICTIVE VALUE }=\frac{\mathrm{a}}{\mathrm{a}+\mathrm{b}}
$$

Predictive Values (PVs)

		Disease status		
		-	TOTAL	
Test result	$\mathbf{+}$	\boldsymbol{a}	b	$a+b$
	-	c	d	$c+d$
	TOTAL	$a+c$	$b+d$	N

$$
\text { NEGATIVE PREDICTIVE VALUE }=\frac{\mathrm{d}}{\mathrm{c}+\mathrm{d}}
$$

Predictive Values (PVs)

Or....(using Prevalence (P), Se, Sp)

- PPV: $\left(\mathrm{P}^{*} \mathrm{Se}\right) /\left(\left(\mathrm{P}^{*} \mathrm{Se}\right)+\left[(1-\mathrm{P})^{*}(1-\mathrm{Sp})\right]\right)$
- NPV: (1-P)*Sp/ ([(1-P)*Sp] +[P*(1-Se)])

Predictive Values (PVs)

- Example:

Tests: Se: 95\%, Sp: 90\%)
a) Prevalence: $\mathbf{3 0 \%}$

- PPV: (P*Se)/(P*Se)+[(1-P)*(1-Sp)] = 80\%
- NPV: (1-P)*Sp/ [(1-P)*Sp] +[P*(1- Se)] = 98\%
b) Prevalence: 3 \%
- PPV: (P*Se)/(P*Se)+[(1-P)*(1-Sp)] = 23\%
- NPV: (1-P)*Sp/ [(1-P)*Sp] +[P*(1- Se)] = 99,8\%

Example

Different screening tests and milk somatic cell count for the prevalence of subclinical bovine mastitis in Bangladesh

Md. Nazmul Hoque • Ziban Chandra Das •

Anup Kumar Talukder • Mohammad Shah Alam •
Abu Nasar Md. Aminoor Rahman

A total of 892 quarters milk samples from 228 lactating cows were screened by California mastitis test (CMT), White side test (WST), Surf field mastitis test (SFMT), and somatic cell count (SCC) to study the prevalence of bovine SCM in some selected areas of Bangladesh.

Table 4 Percentage accuracy, sensitivity, and specificity of various indirect tests used for the diagnosis of bovine subclinical mastitis. Data presented as number (\%)

Tests	Samples examined	Positive samples	TP	FP	TN	FN	Accuracy $(\%)$	Sensitivity $(\%)$	Specificity $(\%)$	PPV $(\%)$	k	$r(\%)$
CMT	892	$408(45.7)$	$307(78.3)$	$101(24.7)$	$325(67.1)$	$159(32.8)$	70.0	65.8	76.2	75.2	0.77	78.2
WST	892	$388(43.5)$	$271(69.8)$	$117(30.1)$	$307(60.4)$	$197(39.0)$	64.8	57.9	72.4	69.8	0.53	68.3
SFMT	892	$368(41.2)$	$239(64.9)$	$129(35.0)$	$295(56.2)$	$229(43.7)$	59.9	51.0	69.5	64.9	0.41	56.6
SCC	892	$491(55.0)$	$455(92.6)$	$36(7.3)$	$305(76.0)$	$96(23.9)$	85.2	82.5	89.4	92.7	0.88	92.4

$T P$ true positive, $F P$ false positive, $T N$ true negative, $F N$ false negative, $P P V$ positive predictive value, k Kappa index (\% agreement), r Pearson's correlation

- Thanks

